

Modeling Workshop #2 Overview

21 February 1996

Background

- At IDR, we briefed an approach to developing an "end to end" model.
 The IDR Review Panel specifically requested two reviews prior to
 Release B CDR to ensure that ECS stayed on track:
 - Review 1: Assumptions and Scenarios (completed)
 - Review 2: Preliminary Results
- To date, modeling activities
 - have focused on system resources that are in contention for both production and distribution, and on "tall poles" from a cost point of view.
 - have not analyzed all of the subsystem hardware components.
 - have not analyzed transactions between all subsystems.

At IDR, infrastructure (i.e., communications and management overhead) was a specific area of concern.

ECS System / Modeling Context

Modeling Workshop #1 Assumptions, Scenarios

- The first modeling workshop (via telecon) focused on assumptions, methodology and scenarios:
 - no major problems
 - general agreement on approach
 - many specific recommendations for further analysis, primarily focusing on excursions from expected normal conditions (what ifs)

Modeling Workshop #2 Preliminary Results

- Today's briefing focuses on preliminary results:
 - modeling excursions that primarily affect the production and data server subsystems
 - initial results of transaction analysis for end to end threads
- Many excursions were requested in the IDR timeframe and help confirm our IDR and CDR design
- Additional excursions were requested in Workshop #1 and will be addressed at CDR and post-CDR modeling updates
- Preliminary end to end analysis focuses on user and production driven threads,
 vs. operations driven threads
- Analysis of infrastructure resource requirements (briefed February 5 at Infrastructure Workshop) shows no tall poles

Workshop 2 Preliminary Results IDR Requests

	WS # 2	CDR	POST
Sensitivity to User Pull	Interim	Results	Update
Volume composition (w/4x distribution)			
Request type			
Decimation			
Archive Sensitivity Study	Interim	Results	Update
Hardware trades			
Middle tier/time blocking trades.			
User Priority vs Production Priority			
User Turnaround Times	Interim	Results	Update
Reprocessing Study			
Different processing assumptions	Interim	Results	
End to End Model	Interim	Results	Update

Workshop 2 Preliminary Results WS#1 Requests

DOCT

	W5#2	CDK	PO51
Failure Injection and Recovery	Interim	Results	
I/O Channel & Device Timing	Testing	Interim	Results
Input Perturbation (EDOS, ASTER)	Design	Interim	Results

MC 4 2

Modeling Analysis Updates Workshop # 1 Questions

Users/Pull: "Archive Sensitivity Study"; "Sensitivity to User Pull"

User pull is stochastic; functional impact? (Lynnes)

What are the basic functions relative to the archive (Lynnes)

Data Server model is top priority; need by pull (Lynnes)

What is the ripple effect of user pull assumptions (Harris)

What is efficiency of different block sizes? (Harris)

How many orders/day to break system? (Lynnes)

Processing: "User Turnaround Time"; "Reprocessing Study"
Put bound on I/O; Vary I/O overhead (Glover)
Percent retrieved from staging vs archive/PGE? (Lynnes)
What is bandwidth between DSS and Processing? (Lynnes)
Vary the DAAC requested distribution (Lynnes)
I/O and memory allocation (Lynnes)

Workshop # 2 Interim Results Workshop # 1 Questions (Cnt'd)

Failure - Recovery: 'Failure Injection and Recovery"
Investigate breakage, impacts, catch-up time (Barkstrom)
Error recovery for both PGEs and ECS software/hardware must be included (Lynnes)

Sensitivity Study - Push Input: Capability being added to model

EDOS needs perturbation of delivery rate - 2x, .5 x (Oleson)

EDOS Perturb constant input - stochastic; 2x (Glover)

EDOS High variability of EDOS input (@ 15 min - 21 hrs) (Lynnes)

EDOS Bimodal input? (Lynnes)

ASTER Physical delivery @ 5 vs 7 days/week (EDC)

ASTER Physical delivery may be @ 1 per 2 weeks(EDC)

ASTER Takes 24 hrs to read tapes @14/day (10GB tapes) (EDC)

What is sensitivity to external events? (Glover)

Workshop # 2 Interim Results Workshop # 1 Questions (Cnt'd)

Sensitivity Study - Distribution: Some results in User/Pull; Need temporal variability data

Look at 50% media, 50% network assumption (Barkstrom)

Expansion of 24 hr distribution buffer (Glover)

2X distribution affected by diurnal & weekly variability (5 vs 7 days) (Lynnes)

What is relative size of reorder vs 24 hr dist disk size? (Lynnes/Glover)

Look at 2X vs 4X distribution (disk size?) (Lynnes)

Vo average pull/pickup is 40 hrs (Lynnes)

ECS to add a warning notice before deletion (Lynnes)

Nominal 100kBps band width to users is typically 50 - 75. (Lynnes)

End-to-End Response Times: Status Briefing

Exercise a wide range of parameters and time profile (Barkstrom)

Modeling Workshop # 2 Agenda

Workshop Overview	8:30
Sensitivity to User Pull	9:00
Archive Sensitivity Study	10:00
User Turnaround Times	11:00
LUNCH	12:00
Reprocessing Study	1:00
Failure Injection and Recovery	2:00
End to End Model	3:00